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SUMMARY

This article deals with the latest development in the construction of monotone high-order residual distri-
bution schemes (RDS) on quadrilateral meshes. In the first part we give some generalities about the way
upwind high-order RDS is designed. In the second part, some standard schemes are described. Then, the
design of a stabilization to help the convergence is shown. The last part of this article is dedicated to the
results obtained with these schemes. Copyright © 2007 John Wiley & Sons, Ltd.

Received 27 April 2007; Revised 19 October 2007; Accepted 22 October 2007

KEY WORDS: residual distributive schemes; high-order schemes; quadrilateral elements

1. GENERALITIES AND NOTATIONS

We present the extension of residual distribution schemes (RDS) on high-order quadrilateral meshes
to approximate steady solutions of

ou
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on 7y, an unstructured quadrilateral mesh of Q. We use the standard Lagrangian QX elements
such that the solution is approximated by a combination of the Lagrangian functions over the
mesh. These Qk elements are constructed such that in each quadrilateral E there are (k+1)2
sub-elements, denoted by E and k*> degrees of freedom oy. We denote by v; the continuous
Lagrangian basis function at the degree of freedom o;; the solution u# being approximated by
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where u; is the value of u at the degree of freedom ¢;. We consider the following iterative scheme:

n+l _ n . Eg
u;m =ui—=6; Yy, @;
Esi€Es

where 0; is an iterative parameter. We consider schemes where the distributed residuals verify

Z @fszf V-7 u")dxdy (3)
jGES Es

We denote by ﬂl.E ¢ the distribution coefficient defined by ﬁlE s=@Fs / (I)I.ES. The schemes that we
consider here verify the following properties.

1.1. Properties

Accuracy: To have a (k+1)-th order scheme, it is necessary to have the following truncation error:
Es 0(pk+2
() = O™

for a smooth solution of (1).

Monotonicity: Rigorously, the definition of monotonic Z%s is linked to the theory of positive
coefficients. In this paper we consider some schemes that behave as monotone schemes in the
sense that they are quasi non-oscillatory schemes, but they are not rigorously monotone.

Upwinding: When a scheme on a triangulation is considered, the upwind parameter is defined by

kiz%k(u*)-ni (4)

where u* is a suitable arbitrary average of u” over the element, A is the Jacobian of the flux Z
and n; is the inward normal of the face opposite to the node i and scaled by the length of this
face. Then a scheme is said to be upwind when

O =0 if k<0 Q)

which means that the information is following the advection direction. The difficulty when consid-
ering a mesh with quadrilateral is that the inward normal is not defined intrinsically; indeed, there
are two faces opposite to each node. We choose the normal which is the sum of the two normals of
these faces as shown in Figure 1. Then, the upwind parameter is computed using Equation (4), and
the definition of upwind schemes is the same (5). Moreover, since ) ;. pn;; =0 the residual is
distributed to one (one target quadrilateral) or two nodes (two target): for more details see [1, 2].

The upwind parameter is defined in the same way when considering Q2 elements; we just use
now the normals of the sub-elements.
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Figure 1. Inward normals to define the upwind parameter.

2. LINEAR SCHEMES

2.1. LDA Scheme

The general formula of the distribution coefficients of this scheme is
max (0, k;)

ZjeEs max(0, k)

= ©6)

From this formula we note that this scheme is upwind. It is (k+ 1)-th accurate (on Qk elements).
Unfortunately, this scheme is not monotone.

2.2. N scheme
For this scheme the distributed residual is directly computed by

®;* =max ki, 0) (; — ttin) (7)
where uj, is defined by

> icg, min(0, ki)u;
ZjeES min(0, k ;)

®)

Uin =

This scheme using formula (8) is consistent only when using Q' elements on a parallelogram.
When using non-Cartesian or high-order elements, this scheme is no longer consistent. Then a
more general formula is used for uj,:

OF =3, g max (0, k;)u;
ZjEES min(0, k;)
This scheme is monotone when using formula (8). When the more general one (9) is used, the
scheme is no longer rigorously monotone, but it still behaves as a monotone scheme (see [3]).

Unfortunately, it is always 1st order accurate (see the Godunov theorem [4]). We are interested in
combining the accuracy of the LDA scheme and the monotonicity of the N scheme. A solution is

€))

Uin =
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to do blending between the LDA scheme and the N scheme in order to combine their advantages.
Because of the Godunov theorem, this should work for non-linear schemes.

3. NON-LINEAR SCHEMES

3.1. Blending scheme

This scheme is based on the fact that we wish to have an accurate scheme on the smooth part of
the solution and a monotone one on the discontinuous part. Then, the idea is to blend a monotone
scheme (such as the N scheme) and an accurate one (such as the LDA). The scheme can be
expressed as

O =00} +(1- )P (10)
where 6 is defined by
ofs
2ick, 10"

This scheme is not rigorously monotone, but it behaves almost as if it were. It is (k+ 1)-th accurate.

4. STABILIZATION

Unfortunately, these schemes show some instabilities on some of the vertices (see [1, 5]). This
is due to poor convergence and also due to some oscillations on the solution. To cure these
instabilities, an artificial dissipation is added. This stabilization is the extension of the one of
Abgrall to high-order discretization:

@stad =/ (VF (up)-Vy;) (VT (up) - Vu') dQ (12)
E

where V; is the biquadratic basis function of the node i. However, monotone schemes give good
results around discontinuities without the stabilization; hence, we use a switch parameter to cancel
the stabilization around discontinuities. Hence, the stabilization is multiplied by a coefficient o:
_|maxjeg(u;) —minjcg (u))
Imaxjeg (u;)+minjep (u;)+¢&

The stabilized LDA, N and B schemes are denoted by LDAs, Ns and Bs.

(13)

o=

5. RESULTS

First, the accuracy of these schemes are shown in a practical problem. We take A1=(1, %) and the
following boundary conditions:

u(0,y)=—sin(2ny), u(x,0)=sin(nx)
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O LDA on regular mesh

=-11F + LDAs on a slightly deformed mesh
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Figure 2. Grid convergence of LDA and LDAs on regular meshes.
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Figure 3. Grid convergence of LDAs on irregular meshes.

The exact solution to this problem is
sin(n(x —2y))

We solve the problem with Q2 elements on regular, slightly perturbed and unregular grids. More-
over, we compare the accuracy when using and not using the stabilization. We can see in Figures 2
and 3 that the LDA scheme is 4th order accurate on regular meshes, but it decreases to 3rd order
on irregular ones. This may be explained by a term of the truncation error that cancels on Carte-
sian meshes. Moreover, we can see that the stabilization is not decreasing the accuracy. Then, in
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Figure 4. Grid convergence of N and Ns on regular meshes.
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Figure 5. Grid convergence of B and Bs on regular meshes.

Figure 4 we can see that N scheme is Ist order accurate as expected. Finally, in Figures 5 and 6
we can see that, thanks to the blending the monotone scheme and the high-order scheme, the B
scheme is 4th order accurate on regular meshes and 3rd on irregular ones. We can also note that
the stabilization is really improving the accuracy. The goal of the second test case is to compare
A% on Q2 elements with the one on Q'. This is done on the previous test case where the input
is now

u(0,y)=—sin(8ny), u(x,0)=sin(4nx)
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Figure 6. Grid convergence of Bs on irregular meshes.

Figure 7. Comparison between schemes on Q' and Q? elements.

In Figure 7 we plot the cross section of the solution at x =0.9 computed by the Q2 and Q' for
the same degree of freedom. We can see that LDA on Q2 elements has a better resolution on
higher frequency than the one on Q! elements. Finally, the last test case is done on the Burger’s
equation: (# = (u?/2,u)) on the square [0, 17 with the boundary condition u =1.5—2x for y=0.
In Figure 8 we can see the contour levels obtained with the Bs scheme. Even if there are few
oscillations, in Figure 9 we can see that the solution is improved in comparison with the LDA
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Figure 9. Comparison between LDAs and Bs.
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